Elementary Divisor Rings and Finitely Presented Modules
نویسندگان
چکیده
منابع مشابه
Finitely Presented Modules over Semihereditary Rings
We prove that each almost local-global semihereditary ring R has the stacked bases property and is almost Bézout. More precisely, if M is a finitely presented module, its torsion part tM is a direct sum of cyclic modules where the family of annihilators is an ascending chain of invertible ideals. These ideals are invariants of M. Moreover M/tM is a projective module which is isomorphic to a dir...
متن کاملFinitely presented modules over semihereditary rings
We prove that each almost local-global semihereditary ring R has the stacked bases property and is almost Bézout. More precisely, if M is a finitely presented module, its torsion part tM is a direct sum of cyclic modules where the family of annihilators is an ascending chain of invertible ideals. These ideals are invariants of M . Moreover M/tM is a projective module which is isomorphic to a di...
متن کاملQuasi-Exact Sequence and Finitely Presented Modules
The notion of quasi-exact sequence of modules was introduced by B. Davvaz and coauthors in 1999 as a generalization of the notion of exact sequence. In this paper we investigate further this notion. In particular, some interesting results concerning this concept and torsion functor are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1974
ISSN: 0002-9947
DOI: 10.2307/1997051